

Firmware Update Library
(Windows 32/64 bit)

Intel® 9 Series Chipset Family
Intel® Management Engine
Firmware 11.6 SKUs

White Paper

May 2016

Revision: 1.0

Intel Confidential

2 Intel Confidential

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in
personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION,
YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR
DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm%20

This document contains information on products in the design phase of development. Do not finalize a design with this
information. Revised information will be published when the product is available. Verify with your local sales office that you have
the latest datasheet before finalizing a design.

Any software source code reprinted in this document is furnished under a software license and may only be used or copied in
accordance with the terms of that license.

Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced
for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion
or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright© 2016, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

XXXXX / Doc Type Intel Confidential 3

Contents

1 Introduction .. 5
1.1 Terminology ... 5

2 Firmware Update Flow .. 6
2.1 Purpose ... 6
2.2 Supported Operating System.. 6
2.3 FW Update Library Description .. 6

2.3.1 Full Firmware Update Flow .. 7
2.3.2 Partial Firmware Update ... 9

3 Getting Started – FWUpdate Library .. 11
3.1 Environment ... 11
3.2 Setup ... 11
3.3 Security Consideration .. 11
3.4 Sample App .. 12

4 Function Description ... 16
4.1 Get Interfaces ... 16
4.2 Get Last Status .. 16
4.3 Get Last Update Reset Type .. 17
4.4 Save Restore Point ... 17
4.5 Get FW Version .. 18
4.6 Check Policy .. 18
4.7 Check Policy Buffer .. 19
4.8 Verify OEM Id .. 19
4.9 Get Ipu Partition Attributes ... 20
4.10 Get FW Update Info Status .. 20
4.11 FW Update Query Status Get Response .. 21
4.12 FW Update Full – Using File ... 21
4.13 FW Update Full – Using Buffer ... 22
4.14 FW Update Partial .. 22
4.15 FW Update Partial Buffer ... 24

5 Return Codes & Error Values .. 25
5.1 Return codes and Error Values ... 25

4 Intel Confidential

Revision History

Revision Number Description Revision Date

1.0 Initial Release May 2016

§ §

Introduction

XXXXX / Doc Type Intel Confidential 5

1 Introduction
The purpose of this document is to describe the Firmware Update Libraries that will be
used for Intel® Management Engine (Intel® ME) update. It contains a description of
the various APIs to be used. Flow charts will describe the general flow of the library
and the functions.

1.1 Terminology
Acronym/Term Definition

API Application Programming Interface

FPT Flash Partition Table

FTP Fault Tolerant Partition

Full Image A full image starts with a FPT and contains FTP and NFTP partitions.

Full Update Updates all the regions

FW Firmware

FWUpdateLib Firmware Update Library

Intel® ME Intel® Management Engine

LOCL Localization Language

NFTP Non- Fault Tolerant Partition

OEM ID Original Equipment Manufacturer Identification Number

Partial Image A partial image starts with either WCOD or LOCL partitions. NO FPT, FTP,
and NFTP in the file

Partial Update Only updates regions that require an Update such as WCOD or LOCL

Restore Image Has no FPT but starts with FTP or NFTP

WCOD Wireless Card Device

§ §

Firmware Update Flow

6 Intel Confidential

2 Firmware Update Flow

2.1 Purpose
The purpose of the library is to update existing FW image on a platform. The firmware
update process is essential for distributing FW images with bug fixes and also updating
WCOD & LOCL regions. By utilizing the APIs provided in the Firmware Update Library a
program can update the existing FW image on a platform. The library sends the new
FW image to the Intel® Management Engine (Intel® ME) FW. Intel ME FW updates
the flash device with the new FW image.

2.2 Supported Operating System
Windows* 7 32/64b and Windows* 8 32/64b

2.3 FW Update Library Description
The following section describes a high level overview of the FW Update process:

Firmware Update Flow

XXXXX / Doc Type Intel Confidential 7

2.3.1 Full Firmware Update Flow

FWUpdateFull Using Buffer

Read Buffer,
Buffer length,

MEBX Password

Image Type = Full Display ErrorN

Y

Read Buffer

Determine Image Type

Image check for FPT

Determine Expected Number of Partitions.
For full FW Update it is number of expected IPU’s+2

1

Allocate Memory to capture required partition
information to send to the FW

Find FTP, NFTP and /or WCOD | LOCL

Firmware Update Flow

8 Intel Confidential

Y

1

Search for both Runnable
and Non-Runnable part of
the image. If we don't find

the expected
number of partitions

Allocate memory space and Extract the right partitions from the image to
the buffer to be sent to the firmware

Error: File Invalid

Y

N

Extract Partitions to Buffer*

Call the actual update function to start-send-end fw update
using the buffer

Return Success
Finish Update

Performs Update

Firmware Update Flow

XXXXX / Doc Type Intel Confidential 9

2.3.2 Partial Firmware Update

FW Update Partial

Determine Type of Image Inputed

For Partial Update Accept only FULL or Partial Image types

Search for Requested partition ID in expected list of FW, determine the
expected IDs

If Image Provided is FULL then search the Runnable part of the Image else
go to the Non-Runnable part

Read FPT and check for its presence in the Image

1

Allocate memory to capture the required partition information to send to the
FW

Find the right WCOD | LOCL

Firmware Update Flow

10 Intel Confidential

Search for both Runnable and
Non-Runnable part of the image.

If we don't find the expected
number of partitons

Error: File Invalid

Y

N

Compute and Allocate memory space to hold all partitions to be sent to FW

Performs Update

1

Store the Update Version updated for return to caller

Return Success
Finish Update

HECI gets deinitialized on both error or success case in the
update function

Extract partitions to be sent to the firmware

§ §

Getting Started – FWUpdate Library

XXXXX / Doc Type Intel Confidential 11

3 Getting Started – FWUpdate
Library

3.1 Environment
The FWUpdate Library provided is compiled using Microsoft Visual Studio 2010.

3.2 Setup
Follow the setting of the references below to get started with using the Firmware
Update (FWUpdate) library and integrating it to the application correctly.

1. When building the application and integrating FWUpdate library compiler must
know the location of the library and header files.

2. Referencing header files: To reference the header files of the static library, you
must modify the include directories path. To do this, from the Property
Pages dialog, expand the Configuration Properties node, then
the C/C++ node, and select General. Next to Additional Include
Directories, type in the path to the location of the FWUpdateLib.h header file.

3. Linking to Static Library: Within Visual Studio, right click on your project in the
Solution Explorer and bring up the project's Properties dialog. Expand
the Configuration Properties node, then select the Linker category of
properties and, pick the Input option under that. In the Additional
Dependencies property, add the library FWUpdateLib.lib

4. You will also need to reference the “FWUpdateLib.h” file in your program.

Note: Please select the appropriate Libraries and header files when building either 32 bit or
64 bit application.

3.3 Security Consideration
For Windows* 7 and 8 (both 32 and 64 bit), the account must have been created with
Administrator rights.

Since the library accesses restricted parts of the memory and hardware, it must be
run in a window with Administrator Privileges. This is done by right-clicking on the
Command Prompt Icon and selecting “Run as Administrator”

Getting Started – FWUpdate Library

12 Intel Confidential

3.4 Sample App
The sample code provides you with an example of how to integrate the Windows
32/62 bit FWupdate lib into your application. Error handling, command line processing
and loading the update image into memory is left to the customers.

Example – Developing FWUpdate Sample App

/*++

Copyright (c) 2012 Intel Corporation

Module Name:

 FwUpdLcl.c

Abstract:

 Sample application demonstrating the usage of the FWU Client interface

Revision History

--*/

#include <stdio.h>
#include "FWUCommon.h"
#include "FWUpdateLib.h"
#include "Common.h"
#include "me_status.h"

// This function handles the callback from the FWU library for displaying
// the percentage of completeness of the FW update
//
void DisplaySendStatus(float BytesSent, float BytestobeSent)
{
 float value = BytesSent/BytestobeSent * 100;

 if (value != 100) {
 printf ("Sending the update image to FW for verification: [%3.0f%%
]\r",value);
 } else {
 printf ("Sending the update image to FW for verification: [COMPLETE]
\n");
 }
}

//

Getting Started – FWUpdate Library

XXXXX / Doc Type Intel Confidential 13

// This is the main entry point for the FW Update application.
// It handles the initialization of the required libraries and
// interfaces to the FW Update Library.
//

Int PerformUpdate (char* ImageBuffer)

{

 //Declare Variables

 //
 // Load the update image into memory and perform other application
specific
 // initialization
 //
 <TO_DO>
 //
 // Query the FW Update Client if a pending reset is required from
 // a previous update that requires a reset
 //
 if (GetLastStatus(&lastStatus)) {
 //
 // <TO_DO> Handle error…
 //
 }

 if (FWU_ERROR_SUCCESS != (status =
GetLastUpdateResetType(&lastResetType))) {
 //
 // Handle notifying user a pending reset is required
 //
 }

 //
 // Check if the update image is supported
 //
 CheckPolicyStatus = CheckPolicyBuffer((char *)ImageBuffer,
 (INT32)ImageLength,
 (INT32)bAllowSV,
 &Upd_Type,
 &ver);
 switch (Upd_Type) {
 case DOWNGRADE_SUCCESS:
 case SAMEVERSION_SUCCESS:
 case UPGRADE_SUCCESS:
 break;

 case DOWNGRADE_FAILURE:
 case SAMEVERSION_FAILURE:
 //
 // <TO_DO> Handle error of FW Update not allowed…
 //
 return FWU_ERROR_SUCCESS;

Getting Started – FWUpdate Library

14 Intel Confidential

 default:
 break;
 }

 //
 // Download image to FW Update Client
 //
 FWUpdateStatus = FwUpdateFullBuffer ((char *)ImageBuffer,
 (unsigned int)ImageLength,
 Password,
 0,
 FWU_ENV_MANUFACTURING,
 mOemId,

 update_flags,
 &DisplaySendStatus);

 if (FWU_ERROR_SUCCESS != FWUpdateStatus) {

 //
 // <TO_DO> Handle error…
 //
 }

 //
 // Image downloaded to FW Update Client
 // Now query the status of the update being applied
 //
 Print (L"\nFW Update: [0 %%]\r");
 index = 0;

 //
 // Loop through Polling for Fw Update Stages
 //
do{
 symbol = (++index % 2 == 0)?'|': '-';

//Loop to retry 3 times when there is a Heci Send or Receive failure;

 itr = 0;
 do
 {
 Status = FWUpdate_QueryStatus_Get_Response(&UpdateStatus,
 &TotalStages,&PercentWritten,

&lastStatus, &lastResetType);

printf("FW Update: [%d%% (Stage: %d of %d) (%c)]\r",PercentWritten,
UpdateStatus,TotalStages,symbol);

 fflush(stdout);
 itr++;

}while(Status == FWU_IME_NOT_READY && itr < 3);

Getting Started – FWUpdate Library

XXXXX / Doc Type Intel Confidential 15

Sleep(1000);

//Loop until the percent written is not 100 and the status is a success

}while ((PercentWritten != 100 && Status == FWU_ERROR_SUCCESS)||(lastStatus
== STATUS_UPDATE_NOT_READY));

 if (!done) {
 //
 // <TO_DO> Handle timeout error
 //
 }
}

§ §

Function Description

16 Intel Confidential

4 Function Description
This section describes all the functions listed in FWUpdateLib.h. It explains the
purpose, Input arguments and return types.

4.1 Get Interfaces
unsigned int GetInterfaces(unsigned short *interfaces);

Purpose: This function gets the local FW update settings from Intel® MEBX to
determine whether or not Firmware can be updated.

Arguments Interfaces - whether the Local FW Update is disabled (0)

or enabled (1)
or password protected (2)

Returns Gets the Interfaces from HECI
0 = Success
Non-zero value = Failure

4.2 Get Last Status
unsigned int GetLastStatus(unsigned int *lastStatus);

Purpose: This function will get the previous FW update status to ensure that FW
update was successfully executed.

Arguments Laststatus – Last FW Update process Status (E.g Success, Invalid OEM

ID, FW Version mismatch etc)
Refer “me_status.h” for specific values

Returns Gets the last FW update status from HECI
0 = Success
Non-zero value = Failure

Function Description

XXXXX / Doc Type Intel Confidential 17

4.3 Get Last Update Reset Type
unsigned int GetLastUpdateResetType(unsigned int *lastResetType);
Purpose: This function will get the last Update Reset type to determine what type of
system reset is required to load the partition into the memory.

Arguments LastResetType - The last FWUpdate reset type

No reset – 0
Host reset – 1
ME – 2
Global - 3

Returns Gets the last FW update reset type from HECI
0 = Success
Non-zero value = Failure

4.4 Save Restore Point
int SaveRestorePoint(char * ImageFileLib);

Purpose: This function will retrieve an update image from the FW based on the
current FW running. The update image will be saved to the user-specified file.

Arguments Image File - The user named binary file where the update image will

be saved to

Returns Get the restore point and save to Image File
0 = Success
Non-zero value = Failure

Function Description

18 Intel Confidential

4.5 Get FW Version
int GetFwVersion(char * imageFileLib,unsigned short *major,unsigned short *minor,
unsigned short *hotfix, unsigned short *build);

Purpose: This function retrieves the current FW version from the Flash to be
displayed for the user.

Arguments Image File - The binary image passed

Out parameters :
major = Major Version
minor = Minor Version
hotfix = Hot Fix Version
build = Build Version

Returns 0 = Success
Non-zero value = Failure

4.6 Check Policy
unsigned int CheckPolicy(char* ImageFileLib, int AllowSV, UPDATE_TYPE
*Upd_Type,VersionLib *ver);

Purpose: This function determines whether it is a FW upgrade/downgrade or same
version update using a file.

Arguments Image File - Binary Image file

AllowSV - Allow Same Version flag (Set to 1 to execute same version
flow)
Update Type - Update Type Output. Can be DOWNGRADE_SUCCESS =
0, DOWNGRADE_FAILURE = 1, SAMEVERSION_SUCCESS = 2,
SAMEVERSION_FAILURE = 3, UPGRADE_SUCCESS = 4,
UPGRADE_PROMPT = 5,
Ver- FW Version (Major, Minor, Hotfix, Build)

Returns 0 = Success
Non-zero value = Failure

Function Description

XXXXX / Doc Type Intel Confidential 19

4.7 Check Policy Buffer
unsigned int CheckPolicyBuffer(char* buffer, int bufferLength, int AllowSV,
UPDATE_TYPE *Upd_Type, VersionLib *ver);

Purpose: This function determines whether it is a FW upgrade/downgrade or same
version update using buffer.

Arguments Buffer - buffer to access

BufferLength - Length of buffer
AllowSV - Allow Same Version flag
Update Type– Update Type Output. Can be DOWNGRADE_SUCCESS =
0, DOWNGRADE_FAILURE=1, SAMEVERSION_SUCCESS=2,
SAMEVERSION_FAILURE=3,
UPGRADE_SUCCESS=4, UPGRADE_PROMPT=5,
Ver – FW Version (Major, Minor, Hotfix, Build)

Returns 0 = Success
Non-zero value = Failure

4.8 Verify OEM Id
bool VerifyOemId(_UUID id);

Purpose: This function verifies the OEM ID provided by the user with the one
embedded in the FW.

Arguments Id - OEM id

Returns True = OEM ID matched
False = OEM id mismatch

Function Description

20 Intel Confidential

4.9 Get Ipu Partition Attributes
unsigned int GetIpuPartitionAttributes(FWU_GET_IPU_PT_ATTRB_MSG_REPLY
*FwuGetIpuAttrbMsgInfo);

Purpose: This function gets the number of Independent partial update partition
attributes that is currently present and also the list of expected IPUs to be updated.

Arguments Out parameter:

FWU_GET_IPU_PT_ATTRB_MSG_REPLY – is a data structure with IPU
related information

Returns 0 = Success
8193 = Heci Device not found
8204 = Heci message has incorrect message type
8728 = Heci Buffer Size is Small Error
8710 = Insufficient memory Error
8776 = Failure to Send or Receive the Get Partition Attribute Command
Or even when FW returns an error status after receiving command

4.10 Get FW Update Info Status
unsigned int GetFwUpdateInfoStatus(FWU_INFO_FLAGS *StatusFlags);

Purpose: This function gets the current status of the firmware.

Note: This API is not used by the FWUpdate tool. It is being used by the UNS services.

Arguments StatusFlags -

BITS 0:1 (2 bits)
0 = No recovery;
1 = Full Recovery Mode;
2 = Partial Recovery Mode (unused at present).
BIT2; IPU_NEEDED bit, if set we are in IPU_NEEDED state.
BIT3; FW_INIT_STATUS done.
BIT4; FWU_IN_PROGRESS

Returns 0 = Success
8193 = Heci Device not found
8204 = Heci message has incorrect message type
8213 = Heci Buffer Size is Small Error
8710 = Insufficient memory Error
8777 = Failure in Send or Receive of the Get Info Status Command. Or
even when FW returns an error status after receiving command

Function Description

XXXXX / Doc Type Intel Confidential 21

4.11 FW Update Query Status Get Response
unsigned int FWUpdate_QueryStatus_Get_Response(unsigned int* UpdateStatus,
unsigned int *TotalStages, unsigned int* PercentWritten, unsigned int *
LastUpdateStatus, unsigned int * LastResetType);

Purpose: This function queries FW to get response regarding the different stages of
FW Update process.

Arguments UpdateStatus - indicates the current FW Update stage being executed.

TotalStages – indicates the total number of FW Update stages
available.
PercentWritten – indicates the percentage complete of the FW Update
process
LastUpdateStatus – indicates the status of the fwupdate process just
completed
LastResetType – indicates Reset type required for the fwupdate
process just completed

Returns 0= Success
1 = Invalid Manifest Data in partition
8193 = Heci Device not found
8204 = Heci message has incorrect message type
8213 = Heci Buffer Size is Small Error
8710 = Insufficient memory Error
8724 = Failure to send or receive messages to heci to get Status Info
8741 = FW returns incorrect Message Type

4.12 FW Update Full – Using File
unsigned int FwUpdateFull(char* _imageFileLib, char* _pwd,int _forceResetLib,
void(*func)(float,float));

Purpose: Performs the full FW update using the update file provided by the calling
function.

Arguments Image File – Binary Image file

Password – MEBX Password
ForceReset – Send reset request forcefully to the API
Func pointer – (bytes of Binary image currently sent to the FW, Total
bytes to be sent to the FW)

Returns 0 = Success
Non-zero value = Failure

Function Description

22 Intel Confidential

4.13 FW Update Full – Using Buffer
unsigned int FwUpdateFull (char* buffer, unsigned int bufferLength, char* _pwd,int
_forceResetLib, unsigned int UpdateEnvironment,_UUID OemID,
UPDATE_FLAGS_LIB update_flags, void(*func)(float,float));

Purpose: This function performs the full FW Update using the Buffer provided by the
calling function.

Arguments Buffer – Buffer with the update image

Buffer Length – Length of buffer

Password – MEBX Password

ForceResetLib – Flag to perform system reset

UpdateEnvironment – differentiates various firmware update process
environment within the firmware (manufacturing/non-manufacturing)

UUID OEMID – OEM ID

update_flags – flag to indicate FW of recovery/rollback

Func pointer – (bytes of Binary

Returns 0 = Success
Non-zero value = Failure

4.14 FW Update Partial
unsigned int FwUpdatePartial(char *ImageFileName, unsigned int PartitionID,
unsigned int Flags, IPU_UPDATED_INFO *IpuUpdatedInfo, void(*func)(float, float));

Purpose: This function performs a Partial FW Update by using the file provided by the
user.

Arguments ImageFileName - denotes the name of UPD binary image for input.

PartitionID – denotes the partition ID, which could be WLAN (wcod) or
language (locl).
WOCD ID = 0x244f4357 and LOCL ID = 0x4C434F4C
Flags – Bit 0 of the flags is used to set allow same version update.
Other bits are reserved and can be used in the future.
IpuUpdatedInfo- Contain the information that is actually used to
update the IPU partition.
Func pointer – (bytes of Binary image currently sent to the FW, Total
bytes to be sent to the FW)

Returns 0 = Success
2 = No FPT found in the update image

Function Description

XXXXX / Doc Type Intel Confidential 23

8708 = FW upate process already started
8714 = Failed to open input file
8710 = Insufficient memory Error
8771 = Invalid file used for partial FW update (only FULL and Partial
images are supported)
8741 = FW returns incorrect Message Type or wrong image ordering
8193 = Heci Device not found
8204 = Heci message has incorrect message type
8213 = Heci Buffer Size is Small Error
8707 = Internal error within the library
8719 = FW update is disabled in MEBX
8722 = FW Update start message type error
8724 = HECI device not ready to communicate
8746 = Invalid image size
8747 = Global buffer not available
8748 = Invalid parameters sent to Firmware
8758 = FW image is under version control
8759 = FW image version history check fail
8761 = Firmware write file failure
8762 = firmware read file failure
8763 = firmware delete file failure
8764 = partition layout not compatible
8765 = FW downgrade not allowed due to data mismatch
8766 = MEBX Password mismatch
8767 = MEBX Password retry exceeded threshold
8778 = The partition ID requested for update is not expected by the FW
8784 = Error for no partition ID provided to the API

Function Description

24 Intel Confidential

4.15 FW Update Partial Buffer
unsigned int FwUpdatePartialBuffer(char* buffer,unsigned int bufferLength, unsigned
int PartitionID, unsigned int Flags, IPU_UPDATED_INFO *IpuUpdatedInfo,
void(*func)(float, float));

Purpose: This function performs the Partial FW Update. If the requested partition is
expected by the Firmware, it will search for the expected partition in the image
provided, extract it and send it to the FW to perform the update. If the expected
partition is not found in the image an invalid file error will be returned by the tool. If
the requested partition is not expected by the firmware an error will be returned to
the user.

Note: For Partial FW update the image provided must either be a Full or Partial image. A full
image starts with a FPT and contains FTP and NFTP partitions. A partial image starts
with either WCOD or LOCL partitions.

Arguments Buffer - Buffer

Buffer Length – Length of buffer

Returns Partition ID - denotes the partition ID, which could be WLAN (wcod)
or language (locl).
WOCD ID = 0x244f4357 and LOCL ID = 0x4C434F4C
Flags: Bit 0 of the flags is used to set allow same version update.
Other bits are reserved and can be used in the future.
IpuUpdatedInfo - Contain the information that is actually used to
update the IPU partition.
0 = Success
Non-zero value = Failure

§ §

Return Codes & Error Values

XXXXX / Doc Type Intel Confidential 25

5 Return Codes & Error Values
List of all the return codes and Error Values:

5.1 Return codes and Error Values

0 FWU_ERROR_SUCCESS

8193 HECI Device not Found

8199 Failure to send or receive messages to HECI to get Status Info

8204 HECI message has incorrect message type

8213 HECI Buffer Size is Small Error

8707 Internal error within the library

8710 FWU_NO_MEMORY - Insufficient memory Error

8713 Invalid Image file header

8714 FWU_FILE_OPEN - Failed to open input file

8727 Failure to send or receive HECI messages to HECI client

8741 FW returns incorrect Message Type or wrong image ordering

8746 Invalid image size

8747 Buffer not available

8748 Invalid parameters sent to Firmware

8761 Firmware write file failure

8762 Firmware read file failure

8763 Firmware delete file failure

8764 Partition layout not compatible

8765 Downgrade NOT allowed, data mismatched

8771 Invalid file used for partial FW update (only FULL and Partial images are supported)

8776
Failure in Send or Receive of the Get Partition Attribute Command. Or even when FW
returns an error status after receiving command

8778 The partition ID requested for update is not expected by the FW

8793 FW Update/downgrade is not allowed to the supplied FW image

8794 FW downgrade is not allowed due to SVN restriction

Return Codes & Error Values

26 Intel Confidential

§ §

	1 Introduction
	1.1 Terminology

	2 Firmware Update Flow
	2.1 Purpose
	2.2 Supported Operating System
	2.3 FW Update Library Description
	2.3.1 Full Firmware Update Flow
	2.3.2 Partial Firmware Update

	3 Getting Started – FWUpdate Library
	3.1 Environment
	3.2 Setup
	3.3 Security Consideration
	3.4 Sample App

	4 Function Description
	4.1 Get Interfaces
	4.2 Get Last Status
	4.3 Get Last Update Reset Type
	4.4 Save Restore Point
	4.5 Get FW Version
	4.6 Check Policy
	4.7 Check Policy Buffer
	4.8 Verify OEM Id
	4.9 Get Ipu Partition Attributes
	4.10 Get FW Update Info Status
	4.11 FW Update Query Status Get Response
	4.12 FW Update Full – Using File
	4.13 FW Update Full – Using Buffer
	4.14 FW Update Partial
	4.15 FW Update Partial Buffer

	5 Return Codes & Error Values
	5.1 Return codes and Error Values

